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Abstract

The background to the work is the increasing interest in virtual acoustic prototypes, and the need to predict sound

pressure radiated from machines without having to assemble them physically. The focus of the paper is on structure-borne

sound, and the objective is to investigate ways of simplifying the calculation of contact forces between a vibro-acoustically

active component and its passive supporting structure. An analysis shows the importance of the singular values of the

mobility matrices in determining the error due to simplifications. Errors are also analysed using Monte Carlo simulations

for the case of an electric motor installed on a machine frame. The results show that at frequencies above the first anti-

resonance, the off-diagonal elements of the source mobility matrix can be neglected. However, at lower frequencies no such

simplification is possible. A hybrid mobility matrix is therefore proposed: at high frequencies it is diagonal, consisting of

measured point mobilities, and at low frequencies the entire matrix is calculated using a simple rigid mass-stiffness model.

Only point mobilities need to be measured rather than a full set of point and transfer mobilities, giving a significant

reduction in measurement and data handling. Validation measurements show that the contact forces calculated using the

hybrid matrix are, if anything, more accurate than those based on a purely measured matrix. It is argued that this is

because the mass model is more robust than measured mobilities for this type of behaviour, being based on radii of inertia

and mass only. It is noted that the conclusions are likely to apply to other structure-borne sound sources because of general

similarities in low-frequency behaviour.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The background to this paper is an increasing need for designers of machines to replace traditional physical
prototypes by more cost-effective alternatives, most notably using ‘virtual’ technologies. In the field of
acoustic design, there has been considerable interest in developing virtual acoustic prototypes as a faster and
more cost-effective means of trying out new designs. Here, a machine that does not physically exist may be
‘assembled’ by combing, in the computer, sets of data that represent the appropriate vibro-acoustic properties
of the separate components. The result may then be auralised to give a more or less realistic impression of the
sound of the machine without the need to physically assemble it.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In general, the external sound radiated from a machine may be due to initial excitation by fluctuating air
pressure, vibration or time-varying pressure in fluids, i.e. by air-borne, structure-borne or fluid-borne
excitation. In this paper only structure-borne excitation is considered, although the general scheme is
applicable to all three excitation types. The machine is separated into two substructures: an active component
that initially generates the disturbance, and the remaining passive parts of the machine frame which modify
the sound by transmission and radiation. The overall aim is to predict the external radiated sound based on
data obtained from the two separate subsystems before assembly. Since only structure-borne excitation is
considered, we are looking specifically to predict the part of the external sound that is due to an initial
structure-borne excitation by the active component.

The active component studied is an electric motor, which is rigidly bolted into the machine frame. Although
a specific case, to a large extent this can be considered representative of a whole class of problems as will be
discussed later.

The structure-borne sound source is considered as a ‘black box’, i.e. its effect on connected structures is
represented by its properties at the connection points [1]. The properties required in this case are the mobility
matrix of the connection points together with either the free velocity or the blocked force vector [2]. The
mobility matrix of the receiving structure is also required in order to calculate the contact forces. The black
box model assumes the excitation mechanisms inside the source remain invariant whatever the properties of
the connected structure. This is probably not completely true in practical cases, but it is the most practical
assumption in the absence of a detailed model of internal mechanisms, which does not exist for the majority of
active components. There is an increasing number of studies where essentially this approach has been used to
calculate the power transmitted to a passive receiver structure by a rigidly attached source, some examples of
which are given in Refs. [2–6].

Although the black box model is now widely accepted, there is a practical problem in implementation
because the amount of data required is large, particularly the mobility matrices [7,8]. Hence, the objective of
this paper is to reduce the amount of data needed whilst maintaining an acceptable level of accuracy in the
prediction of radiated sound.

2. Theory

2.1. Substructuring approach

In general, the sound pressure at various points around a machine can be represented as a column vector p
of length m, where m is the number of receiver points. This is considered to be the result of n forces forming a
length n vector, f, acting on the machine frame (see Fig. 1). The force input and pressure output are linked by
an m� n matrix of transfer functions T such that:

p ¼ Tf: (1)

Each element in T represents the sound pressure at external position j (j ¼ 1; 2; . . .m), per unit force excitation
at point k (k ¼ 1; 2; . . . n) on the machine frame. T therefore represents the combined effect of all transmission
f2 fnf1

. . . 
pmp2p1

Fig. 1. Schematic of overall prediction scheme.
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paths, and quantifies the net effect of vibration transmission through the frame, radiation from the frame and
subsequent diffraction and transmission of the radiated sound on its way to the receiver position. Harmonic
excitation is assumed, so all variables are functions of frequency.

The force vector f applied to the frame depends on both the source and receiver structure in general and is
given by

f ¼ ½YS þ YR�
�1vsf (2a)

in which YS;YR are the mobility matrices of the source and receiver (frame) respectively, and vsf is the vector
of free velocities of the source. Eq. (2a) can also be written in terms of the blocked force vector by making the
substitution vsf ¼ YSfsb giving:

f ¼ ½YS þ YR�
�1YSfsb, (2b)

where fsb is the vector of blocked forces which, like the free velocity, is an independent property of the source.
The difficulty in calculating external sound pressure stems largely from the difficulty in calculating the

vector of contact forces. The overall aim of simplifying calculation of the sound pressure, p, therefore largely
equates with the problem of simplifying calculation of the forces. There are two main problems: firstly, the
number of terms involved necessitates a significant measurement or calculation effort, which is not realistic for
most industrial applications; secondly, a matrix inversion is involved which is associated with well-known
numerical problems. Various ways of reformulating this problem have been investigated, such as use of
eigenvalue decompositions [9–11] and other orthogonal transformations [12,13].

2.2. Estimation of error bounds

The question is now considered of how to determine the accuracy of simplified predictions. It is necessary to
predict the sound pressure spectrum at typical listener positions around the machine from which the sound can
be auralised [14,15]. Also of interest in most cases is the overall sound power of the assembled machine. The
sound power provides the best overall indication that the acoustic behaviour has been accurately represented
since it includes the effect of all points. Therefore, the sound power will be used as a reference quantity to
assess the effect of simplifications. If the external receiver positions are chosen on the surface of a hemisphere
or parallelpiped, then the sound power is proportional to the spatially averaged sound pressure squared.
Therefore, the spatially averaged squared pressure is a suitable parameter to quantify the effect of
simplifications. It can be written as the inner product of the pressure vector:

Xm

j¼1

jpij
2 ¼ pHp ¼ jpj2 ¼ fHTHTf, (3a)

where ½��H ¼ ½���T is the conjugate transpose, or Hermitian transpose. The right-hand side of Eq. (3a) can be
expanded:

Xm

j¼1

jpij
2 ¼

Xm

j¼1

Xn

k¼1

Xn

i¼1

T�jkTjif
�
kf i ¼

Xm

j¼1

Xn

k¼1

jTjkj
2jf kj

2 þ
Xm

j¼1

Xn

k¼1

Xn

i¼1
iak

T�jkTjif
�
kf i, (3b)

where fi and Tjk are the elements of the force vector and transfer function matrix, respectively. For random
excitation, the terms jpij

2 ¼ Spipi
are the auto-spectra of the sound pressure at the external points, jf kj

2 ¼ Sf kf k

are the auto-spectra of the forces, and f �kf i ¼ Sf kf i
are the cross-spectra of the forces. Thus, Eqs. (3a) and (3b)

express the energetically averaged external sound pressure in terms of the auto- and cross-spectra of the
applied forces.

In the second form of Eq. (3b), the direct terms (first term) and cross terms (second term) have been
separated out. If the forces are mutually incoherent, then the cross-spectra are zero and the cross terms vanish.
In the following, it will be assumed that the forces are coherent, since this represents a worst case for the
simplifications to be tested. However, it is worth noting at this stage that there are other conditions under
which the cross terms may be negligible, even for coherent excitation. Firstly, if the phase of the product
within the sum is random, then the sum of many terms will tend to zero. This will occur for example if the
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receiver points are widely spaced compared with a wavelength. Secondly, if the phase varies with frequency (as
would normally be expected) then a frequency average of the cross terms will tend to zero. Thirdly, if the
magnitude of the off-diagonal transfer functions is small compared with that of the diagonal terms, as
sometimes occurs then the resulting sum will be small.

Eqs. (3a) is recognised as a quadratic form. A standard procedure is to write the force vector as f ¼ Xq

(in which the columns of X are the normalised eigenvectors of the m�m square matrix THT), so that the
quadratic form is expressed as a weighted sum of eigenvalues [16]:

jpj2 ¼
Xn

i¼1

qi

�� ��2li, (4a)

where the li are the (non-negative) eigenvalues of the m�m square matrix THT (which happen also to equal
the squared singular values of T [16]). To illustrate the relationship between the magnitude of pressure and
force, we write qi ¼ aijqj and note that jqj2 ¼ jfj2 so as to obtain:

jpj2 ¼ jfj2
Xn

i¼1

jaij
2li

 !
, (4b)

where
Pn

i¼1a
2
i ¼ 1, and jfj2 ¼

Pn
i¼1jf ij

2. Eq. (4b) shows that the spatially averaged sound pressure squared
(and hence sound power) is proportional to the spatially averaged force squared. Therefore, the following
discussion is largely restricted to the problem of estimating the spatially averaged force magnitude
squared jfj2.

The preceding development has been given in terms of forces, but the general approach is not restricted to
forces and can also include moment excitation. This can be done by transforming the mobility matrix into a
dimensionless form using the formulation described in Ref. [17], which is also given in Ref. [18]. The same
steps as above can then be employed on the dimensionless matrix. For simplicity, the ‘forces only’ formulation
will be continued in this paper.

With the above in mind, the effect of simplifications on the accuracy of the solution can be gauged
by comparing the true modulus of the force vector jfj2 with that obtained from a simplified prediction denoted
as f 0
�� ��2. Substituting for the forces from Eq. (2a), the ratio of approximate to true force squared is thus

expressed as

Ev ¼
jf 0j2

jfj2
¼

vH
Sf Y0S þ Y0R
� ��H

Y0S þ Y0R
� ��1

vSf

vH
Sf ½YS þ YR�

�H ½YS þ YR�
�1vSf

, (5a)

where Y0S;Y
0
R are the simplified source and receiver mobility matrices, respectively, and the denominator

represents the unmodified case. Alternatively, if the source is characterised by the blocked force then the
normalised force squared follows from Eq. (2b) in a similar manner:

Ef ¼
jf 0j2

jfj2
¼

fH
SbY
0H
S Y0S þ Y0R
� ��H

Y0S þ Y0R
� ��1

Y0SfSb

fH
SbY

H
S ½YS þ YR�

�H ½YS þ YR�
�1YSfSb

. (5b)

For a given source and receiver structure, the mobilities YS;YR, Y
0
S;Y

0
R are of fixed value. However, the

excitation vector (fSb or vsf ) may vary for different speeds and running conditions of the source [19] and so in
turn may the normalised force squared. Therefore, we need to consider the amplitude of the normalised force
as a statistical quantity. Over certain frequency ranges, it is possible to place restrictions on the form of the
excitation vector by bringing into play some knowledge of the source structure; for example, if the source is a
rigid mass then the motion of each mount point is not independent (a detailed discussion of other such
possibilities is given in Ref. [20]). However, rather than restrict the generality of the results it is assumed in the
following that the excitation vector may take any form. Therefore, the ratio of approximate to true force must
be given as a probability density at each frequency. This basic approach was first outlined in Ref. [21].
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2.3. Errors in terms of mobility matrix singular values

In order to gain insight into the range of errors, it is noted that Eq. (5a) is the ratio of two positive semi-
definite quadratic forms, each of which can be written as a weighted sum of eigenvalues:

Ef ¼
jfSbj

2
Pm

i¼1l
0
RS;ijb

0
ij
2

jfSbj
2
Pm

i¼1lRS;i bij j
2
, (6)

where lRS;i are the eigenvalues of the n� n square matrix ½YS þ YR�
�H ½YS þ YR�

�1 (with units of 1/mobility

squared) for the unmodified case, and similarly for l0RS;i; b0i; bi are the participation factors for the modified and

unmodified mobility matrices, respectively, and
Pn

i¼1b
02
i ¼

Pn
i¼1b

2
i ¼ 1 similarly to Eq. (4). In this case the

eigenvectors correspond to spatial patterns in the free velocity at the contact points, and are functions of frequency.
It happens that since ½YS þ YR�

�H ½YS þ YR�
�1 is a Hermitian matrix, we have lRS;i ¼ 1=s2i , where the si are

the singular values of ½YS þ YR�, and similarly for the modified matrix. Substituting into Eq. (6) we obtain:

Ef ¼
Xm

i¼1

jb0ij
2

s02i

,Xm

i¼1

jbij
2

s2i
. (7)

The singular values can be thought of as an extension of the point mobility to multiple point contact: whereas
the point mobility is the magnitude ratio of velocity to force at a point, the singular value is the ratio of
spatially averaged velocity to spatially averaged force over multiple points when the spatial distribution of the
exciting forces conforms to a particular spatial pattern (the corresponding singular vector) [10].

Eq. (7) is of the form of a singular value perturbation problem. It shows that the most important factor
affecting the error is the change in the singular values when the matrix is ‘perturbed’, i.e. simplified, for
example by removing elements (although the change in the singular vectors also plays a role). Problems of this
type have been studied extensively, particularly in relation to numerical evaluation of singular values where
the matrix is subject to a small error (see for example Ref. [22]).

It is possible to find bounds for the normalised force squared, since both the numerator and denominator
are bounded by the maximum and minimum singular values:

1

s2max

p
Xm

i¼1

jbij
2

s2i
p

1

s2min

and similarly for the modified case.
Therefore, strict upper and lower bounds for the normalised force squared can be given in terms of the ratio

of singular values [10]:

s0min

smax

� �2

pEf p
s0max

smin

� �2

. (8)

This form is attractive for its simplicity and gives useful insight into the importance of the singular values in
determining the bounds on the approximate solution. Furthermore, it can be written in terms of the singular
values of the individual mobility matrices which is advantageous because they are independent properties of
the source and receiver structure, respectively [10]. However, these forms are found to be of limited practical
value in this case since the bounds are too conservative. Although there are perturbation methods that give
less conservative bounds, these are most useful for small perturbations, typically considered to be of the order
of numerical ‘noise’.

2.4. Numerical evaluation of errors

For the much larger variations involved here, the approach with the least conservatism is the use of Monte
Carlo methods. Similar methods were used in Ref. [23], where the variation in transmitted power was studied.
The random variable in that case was taken to be the ‘force ratios’, i.e. the spatial variation of the contact
forces, which are a property of both source and receiver. In the following, the variance in net contact force and
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subsequent radiated sound pressure is to be studied in terms of the spatial patterns of free velocity. This has
the advantage that free velocity is independent of the source and frame mobilities.

The free velocity vector can be written as

vSf ¼ jvSf jq;

where vSf

�� �� ¼ ðPijvSf ;ij
2Þ

1=2 is the length of the vector, q ¼ qr þ iqi and qHq ¼ 1, i.e. q is a normalised complex
vector. Substituting into Eq. (5a) we obtain:

Ev ¼
qH ½Y0S þ Y0R�

�H ½Y0S þ Y0R�
�1q

qH ½YS þ YR�
�H ½YS þ YR�

�1q
, (9a)

which shows that the normalised force squared is independent of the magnitude of the blocked force and
depends only on the spatial patterns defined in q. The corresponding error for the blocked force formulation
is, from Eq. (5b):

Ef ¼
qHY0

H
S ½Y

0
S þ Y0R�

�H ½Y0S þ Y0R�
�1Y0Sq

qHYH
S ½YS þ YR�

�H ½YS þ YR�
�1YSq

. (9b)

Confidence limits for the approximate solution at each frequency can be obtained by solving Eqs. (9a) or (9b)
many times for different q, where the real and imaginary parts of q are random vectors.

3. Evaluation of errors using measured mobility matrices

This section contains a brief description of the measured mobilities, evaluation of the confidence limits for
the approximate solution using both singular value and Monte Carlo methods, and interpretation of the
results.

3.1. Mobility measurements

The source was an electric motor, suspended for measurement of mobility as illustrated in Fig. 2.
Measurements were made at the four mounting locations and in the x, y and z directions. It was assumed that
the coupling between the x, y and z directions was negligible, and rotational mobilities were not considered.
The mobility matrix was therefore a 12� 12 matrix with 3 blocks of 4� 4 on the diagonal. The corresponding
measurements were also made on the frame, a plastic washing machine tub.

In Fig. 3 (top) are shown some sample measured mobilities for the frame. The behaviour is mass-like up to
400Hz where an anti-resonance occurs. Above 500Hz some resonances of the frame are observed, but the
Fig. 2. The source structure, an electric motor.
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Fig. 3. Typical mobility plots for source (a) and frame (b). Bold lines are point mobility and lighter lines are typical transfer mobilities

from contact point 1 in the y (axial) direction. Results for points 2, 3, 4 and x and z directions were similar and are not shown for brevity.
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average trend is flat indicating that the behaviour can be considered to be plate-like. The corresponding plots
for the source are shown in the lower plot of Fig. 3. The low-frequency behaviour is again mass-like, up to
50Hz where an anti-resonance occurs. There follows a region of stiffness-like behaviour covering a large part
of the frequency range of interest up to about 1500Hz where there is a resonance peak. Stiffness-like
behaviour is most clear between 100 and 300Hz, and the transfer mobility in this stiffness range is
comparatively low, i.e. coupling between mount points is relatively weak as has been observed for stiffness-like
behaviour in other situations [24].

It has been shown in Ref. [2] that the matching between source and receiver mobility is of great importance
in the power transmission. Consequently, it is instructive to compare the point mobilities of source and frame,
which is done in Fig. 4 for point 1 and the y direction. It illustrates that below about 150Hz the source
mobility is higher (the source is lighter than the frame), and above this frequency the frame mobility is higher
(it is more compliant than the source). This general trend was similar for other positions and directions.

3.2. Evaluation of errors using singular values

It has been observed above that the singular values of the mobility matrices are an important factor in
determining the error. These are plotted in Fig. 5 for the source (upper plot) and the frame (lower plot), and
reveal interesting aspects of the physical behaviour of the two structures. If the range of the singular values is
narrow, then the velocity response of the structure is sensitive only to the magnitude of the exciting forces. On
the other hand, a wide range in the singular values indicates that small variations in the spatial distribution of
the forces could have a pronounced effect on the velocity response. These relationships were first outlined in
Ref. [10]. Looking at the lower half of Fig. 5 we observe that the range is wide for the frame below 100Hz,
indicating that different distributions of the forces could produce dramatically different responses. This is
because the structure is mass-like in this region, and has six degrees of freedom, so there are some
combinations of 12 forces that would produce no response, while more ‘efficient’ distributions may produce a
large effect. At higher frequencies the range of the singular values is considerably smaller, particularly between
100 and 300Hz. It has already been observed that the transfer mobilities are low in this region, so that the
points are not well coupled and act more or less independently. Furthermore, since the points are all
geometrically similar, the resulting mean square velocity will be more or less the same no matter how the
forces are distributed, hence the low range in the singular values.

The singular values will now be used to determine the likely error in simplifying the mobility matrices.
Shown in bold in Fig. 6 are the singular values of the matrix ½YS þ YR� unmodified. This matrix was then
modified by removing the off-diagonal elements of YR, which is equivalent to assuming that the contact points
on the frame are uncoupled. The singular values were then recalculated and are shown in dotted lines. It is
seen that the ‘perturbed’ singular values agree well with the ‘true’ values at low and high frequency, but that
there are some differences in the range of 150–350Hz. These results can be explained as follows. As observed
in Fig. 4, at low frequencies (mass region) the source mobilities are significantly higher than those of the frame.
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Hence any of the terms in YR can be neglected without introducing significant errors. At high frequencies, the
frame is less stiff than the motor, so the sum ½YS þ YR� is dominated by the YR terms. However, the frame
transfer mobilities (off-diagonal terms of YR) are only significant compared with the diagonals in the range
150–350Hz. Hence, this is the only frequency range where a perturbation is seen.
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Fig. 6 suggests that the errors due to this simplification will be relatively small. However, it would be
preferable to produce confidence limits, which demands a Monte–Carlo approach as described in the next
section.

3.3. Evaluation of errors using Monte Carlo methods

Various simplifications were tested as summarised in Table 1. Neglecting off-diagonals will be valid if the
transfer mobilities between points are small in comparison to the diagonals. It will also be valid if off-diagonal
contributions to jfj2 cancel, which will tend to happen when contact points are separated by more than a
wavelength due to phase differences. Neglecting YS assumes that the source is not dynamically ‘loaded’ by the
frame, and is equivalent to the velocity source assumption.

Eq. (9a) was evaluated using 100 random vectors for each case. This was shown to be a sufficient sample size
by carrying out a preliminary check with an increasing number of vectors until convergence was obtained. The
predicted normalised forces squared at each frequency were arranged in ascending order and the 5th and 95th
estimates were plotted as a function of frequency, as shown in Fig. 7 for Mod 1. These values correspond to
the 90% confidence limits on the normalised force squared, i.e. there is a 90% probability that the ratio of the
simplified and exact prediction of jfj2 will occur between the two lines. Similar results for Mods 2–5 are shown
in Fig. 8.

The results of stripping the off-diagonals from the frame mobility matrix are shown in Fig. 7. The singular
values for this case have already been discussed in Fig. 6, from which it was expected that this simplification
would produce a relatively small error except in the range 150–350Hz and below about 80Hz. The confidence
limits in Fig. 7 are consistent with this expectation. This result was also anticipated from consideration of the
transfer mobilities (Fig. 3) which were relatively small, indicating generally weak coupling between points on
the frame. The implications of these results are that off-diagonal terms of the frame matrix can be fairly safely
neglected, which would substantially reduce the measurement, data handling and processing effort required to
calculated forces. It should be appreciated that the confidence limits are if anything conservative since it is
assumed that any excitation vector q is equally likely; in practise there will always be some restriction on q

(such as in rigid mass behaviour as discussed earlier) which will reduce the range of errors. Furthermore, as
argued in relation to Eq. (3b), if the excitation forces are incoherent the contribution of cross terms, and hence
errors, will diminish.

Fig. 8(a) shows the corresponding results when assuming the source mobility matrix to be diagonal.
Significant errors occur in the range 200Hzofo600Hz. Not only is there a large spread but there is
a bias error, so, for example we can be 90% confident that there will be an underestimate of at least 8 dB at
400Hz. It is interesting that above 600Hz the errors are relatively small. This would not necessarily be
predicted from consideration of the transfer mobilities which are of similar magnitude to the point mobilities.
A possible explanation is that although there is significant interaction between contact points, the
contributions to the response from other points tends to cancel because of differing phases (see discussion
following Eq. (3b)).

Fig. 8(b) shows the corresponding results for the velocity source assumption. This simplification introduces
a bias error over most of the frequency range. The large overestimate at low frequencies can be explained by
Table 1

Summary of simplifications tested

Number Simplification Interpretation

Mod 1 YR ! diagðYRÞ Valid either if the coupling between frame contact points is small, or if the phase of

the coupling terms is random

Mod 2 YS ! diagðYSÞ Valid either if the coupling between motor feet is small, or if the phase of the

coupling terms is random

Mod 3 YS ! 0 Equivalent to velocity source assumption

Mod 4 Use y direction data for YR x and z mobilities replaced by y data. Assumes mobility similar in each direction

Mod 5 Use y direction data for YS As above for source
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consideration of Fig. 4: the mass of the frame is significantly higher than that of the source, so there is a large
reduction in velocity when the source is connected to the frame. Above about 350Hz, Fig. 4 suggests that the
loading of the source by the frame might be minimal because there is a 10 dB offset in the magnitudes of their
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point mobilities. However, Fig. 8(b) shows that there is in fact significant loading when all points and
directions are taken into account, and the free velocity is an overestimate of the coupled velocity.

Shown in Figs. 8(c) and (d) are the results of assuming the x and z mobilities to be equal to the y mobilities
for the frame and source, respectively. The logic of this simplification is that it had previously been noted that
there were no large differences in the mobilities in each direction, so to measure only one direction might be
sufficient and would give a reduction in the measurement and data handling. The errors are relatively small,
except below 200Hz in Fig. 8(d), i.e. when the source mobilities are approximated. The higher errors in this
region are understandable since this is the region of rigid mass behaviour and the mobility would be expected
to vary with direction.

3.4. Interpretation of results

From Fig. 8(b), both source and frame mobility must be taken into account. Fig. 7 shows that only the
diagonal elements of the frame mobility need to be included. For the source, the off-diagonals can be neglected
above 600Hz. However, below 600Hz they must be included, and the points on the motor should be
considered as coupled. This 600Hz limit is specific to the particular motor. However, a more general
conclusion can be drawn by noting from the point mobility curves of the motor (Figs. 3 and 4) that it behaves
as a rigid mass up to about 200Hz, and that there is an anti-resonance between 200 and 600Hz. Therefore, the
frequency region over which coupling must be considered includes mass-like and anti-resonant behaviour.
This type of behaviour is often, almost invariably, displayed for sources, so we can argue that the conclusions
will probably also be true for other types of sources irrespective of the absolute frequency over which this
behaviour occurs. Therefore, the conclusion is that coupling must be included at low frequencies where the
structure behaves as a rigid body up to at least the ‘end’ of the first anti-resonance.

Fortunately, the overall behaviour in this frequency region is relatively simple and the matrix should be
readily calculable. Therefore, it is proposed to use a hybrid matrix for the motor wherein, at low frequency the
entire matrix is populated by calculated values, and, at high frequencies only diagonal values are used, i.e.
measured point mobilities.

3.5. Evaluation of errors in radiated sound pressure

Before testing the proposed hybrid mobility matrix, it is worthwhile to consider the errors in radiated sound
pressure. These can be evaluated in a similar manner as was done for the forces above, using Eq. (3) as a
starting point. The normalised sound pressure squared then becomes:

Ep ¼
f 0

H
THT f 0

fHTHT f
, (10)

where the numerator represents the modified case and the denominator the reference, unmodified case. The
unmodified force vectors f are calculated from Eq. (2a), and similarly for the modified vector f0. The 6� 12
matrix of transfer functions T, which is not modified, was obtained by a reciprocal measurement technique.
Here, a volume velocity source is placed at the external positions and the velocity level on the frame at the
contact points in x, y and z directions is measured (see Ref. [24] for a brief description of the measurements).

Fig. 9 shows the calculated bounds on the normalised sound pressure squared for Mod 2, i.e. off-diagonals
of the source mobility matrix neglected. The grey-scale shaded area gives the 90% confidence limits for the
normalised sound pressure squared, and the solid lines give the corresponding results in the force, which are
the same results as given in Fig. 8(a). It is seen that the errors in pressure follow the same trends as for the
force, but with slightly broader bands. Results for other modifications were similar and are not shown. These
results justify the approach of focusing on the effect of simplifications on the calculated forces.

4. Use of a hybrid measured and calculated mobility matrix

The mobility matrix in the rigid body region can be calculated based on simple geometric parameters,
namely, the offset of the contact points from the centre of gravity, the mass and the radius of gyration in the x,
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y and z directions as illustrated in Fig. 10. A general term in the accelerance matrix for a rigid mass excited in
the y direction is given by [19,24]

ay;i

f y;j

¼
1

m
1þ

xixj

p2
z

þ
zizj

p2
x

� �
, (11)

where ay;i is the acceleration at point i due to a force f y;j at point j with all other forces zero; m is the mass of
the motor, px and pz are the radii of gyration for rotation about the x and z axes, respectively, and xi, zi and xj,

zj are the offsets of the response and excitation points respectively from the centre of gravity as shown in
Fig. 10. Eq. (11) can conveniently by extended to matrix–vector form to give the mass mobility matrix for
excitation and response in the y direction:

Ayy ¼
1

m
Uþ

1

p2
z

xxT þ
1

p2
x

zzT
� �

, (12)

where U is an n� n square matrix of ones, and x, z are column vectors of the offsets of the contact points from
the centre of mass. Similar matrices apply for motion in the x and z directions.
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For excitation in the y direction there is also a response in the x and z directions in general. These cross
terms are given by

az;i

f y;j

¼
1

m

�yizj

p2
x

� �
;

ax;i

f y;j

¼
1

m

�yixj

p2
z

� �
, (13)

where symbols are as above, but with the addition of yi, which is the y direction offset of the response point
from the centre of gravity.

Again, this can be extended to an arbitrary number of points by writing in matrix form:

Azy ¼
�1

mp2
x

yzT; Axy ¼
�1

mp2
z

yxT, (14)

where y is the column vector of the y direction offsets of the excitation points from the centre of mass. Similar
expressions apply for the other directions. The whole accelerance matrix for the mass-like region of behaviour
can then be assembled:

A ¼

Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

2
64

3
75. (15)

Values for the x, y and z can be obtained by geometry as shown in Fig. 10, provided the position of the centre
of mass is known with reasonable accuracy. The radii of gyration will not generally be known, but can be
estimated based on a few measured transfer mobilities by using Eq. (11). Thus, the accelerance matrix for rigid
body behaviour can be calculated.

In order to calculate the mobility matrix in the anti-resonant region, it is necessary to combine the
calculated mass-mobility matrix with a compliance-mobility matrix. The total mobility matrix is then formed
by the complex addition of the two, i.e.:

YS ¼
1

jo
Aþ joC, (16)

where A is the accelerance matrix calculated from Eqs. (12), (14) and (15), and C is a compliance matrix:

C ¼ ð1� jZÞdiag 1=ki

� �
(17)

in which the ki are the stiffnesses of points 1–4 on the motor, and Z is the loss factor. This matrix is assumed
diagonal, since, as remarked previously, it is known that off-diagonal elements are usually small in regions of
stiffness-like behaviour [25]. (One possible exception is shell structures with points closely spaced compared
with a free wavelength.)
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Anti-resonances occur when the diagonals of A and C are of equal magnitude. Values for the stiffnesses ki

were found from measured point mobilities by fitting the anti-resonance frequency calculated from Eq. (5a), to
the measured point mobility. To obtain the loss factor, a trial value was employed and adjusted until the
sharpness of the anti-resonance dip agreed with the measured curve. The complete data set for calculating the
low-frequency part of the mobility matrix (y direction) consists of a small number of parameters: the mass,
loss factor, x, y and z offset of feet from the centre of mass, radii of gyration about x, y and z axes, stiffnesses
in three directions for front and back feet.

Fig. 11 shows the measured mobility magnitude curve, together with a hybrid curve consisting of the curve-
fitted values below anti-resonance and measured values above. The frequency for changeover from calculated
to measured mobilities was set where the anti-resonant behaviour was judged by eye to be ‘completed’, and
was 630Hz for points 1 and 4, and 505Hz for points 2 and 3. The calculated curve is seen to capture the
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essential behaviour but is ‘cleaner’ than the measured one. Indeed, it can be argued that the calculated curve is
a more faithful representation of the true behaviour being based on more robust physical characteristics,
particularly in the anti-resonant region and at low frequencies where measurement errors can be significant.

Shown in Fig. 12 are the singular values for the hybrid matrix. The low-frequency asymptotes give six non-zero
singular values: the largest three of these correspond to rotations of the mass about three perpendicular axes (not as
it happens coinciding with x, y and z), and the lower non-zero set of three correspond to rigid body translation in
the x, y and z directions. These can be compared with those from the measured matrix given in the upper plot of
Fig. 5. Here the low-frequency asymptotes suggest there are 12 independent degrees of freedom which is physically
wrong. This strengthens the argument that the calculated matrix is more accurate than the measured one.

To summarise, the hybrid mobility matrix for the source is fully populated by calculated values below
600Hz. Above this frequency, the matrix is diagonal consisting of only the measured point mobilities.
Thus, the entire matrix is constructed from only measured point mobilities. This is significantly simpler than
using the full matrix in terms of measurement, and more importantly, data handling. It remains to be seen
whether the simple matrix gives sufficiently accurate predictions.

5. Validation of the hybrid matrix

In order to validate the hybrid matrix, the motor was mounted in the machine frame and the velocity at the
contact points measured. This ‘coupled velocity’ was also predicted:
(a)
 using the 12� 12 measured mobility matrix for source and receiver,

(b)
 using simplified matrices, i.e. the 12� 12 hybrid matrix for the source and frame.
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The coupled velocity was calculated from:

�1
vc ¼ YRf ¼ YR YS þ YR½ � vsf , (18)

where vc is the coupled velocity vector and other terms have been defined previously. Tikhonov regularisation
was used for the matrix inversion with the regularisation parameter b set to 0.05 times the mean of the singular
values squared. Although the calculations were carried out using 12� 12 matrices, only the y direction coupled
velocity was measured and included in the comparison, i.e. the comparison was made on the basis of a subset
of results, which is valid.

A sample of the results is shown in Fig. 13 for a running speed of 16,500 rev/min. The spectra are seen to
consist of a harmonic series and are typical for an electric motor. Fig. 14 shows the same results but in third
octave bands (which are shown to aid comparison). The upper plots of Figs. 13 and 14 show the calculation
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from the full mobility matrix compared with direct measurement and the lower plots those from the hybrid
matrix. Firstly, it is noted that both full and simplified predictions give good agreement with direct measurement.
Secondly, as predicted in the sensitivity analysis above there are no major discrepancies introduced by the
simplification. Thus, although the simplified matrices use far less measured data they do not generally provide
less accurate predictions. Indeed, in the lowest frequency bands the predictions are more accurate, for example,
the lowest frequencies of Figs. 13 and 14. This was already anticipated from above where physical behaviour
dictates there should be only 6 non-zero singular values, whereas the measured results showed there to be 12.

Above 500Hz the simplification consisted of removing all but the diagonal elements. Here the accuracy is
good, which was anticipated from the confidence limits in Fig. 8, despite the fact that a conventional
examination of the transfer mobilities from Fig. 4 suggests strong coupling between contact points in the
source. This is taken to indicate that the cross terms tend to cancel due to random phase.

Figs. 15 and 16 show similar results for a lower running speed of 7600 rev/min. The results and conclusions
are essentially the same as above. Other running speeds were also examined and yielded generally similar
results which are not shown.
6. Concluding remarks

The background to this work is increased interest in virtual acoustic prototypes. Here, the sound pressure
from an assembled machine is calculated from two independent data sets, one characterising the properties of
the vibro-acoustically active components, and another representing the properties of the remaining passive
parts of the machine. The focus of the paper is on structure-borne sound transmission, and particularly on the
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calculation of contact forces between the active component and its supporting structure. Various ways have
been investigated of reducing the large quantity of data needed to calculate the contact forces, and the errors
caused by the simplifications have been tested using both singular value expansions and Monte Carlo
simulations. It has been argued that the errors in the contact forces due to simplification are to a large extent
representative of the errors in the subsequently radiated sound pressure.

The confidence limits produced showed that it is possible to neglect off-diagonal elements of the source
mobility matrix above the first anti-resonance frequency. However, at low frequencies, no elements of the
matrices could be neglected without introducing significant errors. It was observed that the region of large
errors corresponded with the frequency range in which the source behaves as a rigid mass. It was therefore
proposed that the low-frequency behaviour be calculated from a rigid mass model, combined with local
stiffness of the feet. Measured point mobilities were used to obtain the radii of inertia and the local stiffness
required for the model. At frequencies above the first anti-resonance the simple model is not valid, and
measured point mobilities were used.

The hybrid mobility matrix was validated by calculating the coupled velocity of the motor when rigidly
attached to its frame, and comparing with the measured velocity. No loss of accuracy was caused by the
simplification; indeed, in some cases the simplified predictions were more accurate. It is argued that this is
because the predicted mobilities in the mass region are more robust than measured values, being based on
more simple characteristics like mass and geometry.

The proposed hybrid approach allows all the necessary mobility data to be obtained purely from measured
point mobilities, with no need to measure transfer mobilities. This represents a significant reduction in the
measured, and more importantly data handling effort required.

Although in this paper only a single structure-borne source has been considered, it has been argued that the
same approach is likely to be applicable to other cases of practical importance.
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